and write

$$
\left(\begin{array}{cc}
\mathbf{C}^{k} & \mathbf{0} \\
\mathbf{0} & \mathbf{N}^{k}
\end{array}\right)=\mathbf{Q}^{-1} \mathbf{A}^{k} \mathbf{Q}=\binom{\mathbf{U}}{\mathbf{V}} \mathbf{A}^{k}(\mathbf{X} \mid \mathbf{Y})=\left(\begin{array}{cc}
\mathbf{U A}^{k} \mathbf{X} & \mathbf{0} \\
\mathbf{V A}^{k} \mathbf{X} & \mathbf{0}
\end{array}\right)
$$

Therefore, $\mathbf{N}^{k}=\mathbf{0}$ and $\mathbf{Q}^{-1} \mathbf{A}^{k} \mathbf{Q}=\left(\begin{array}{cc}\mathbf{C}^{k} & \mathbf{0} \\ \mathbf{0} & \mathbf{0}\end{array}\right)$. Since \mathbf{C}^{k} is $r \times r$ and $r=$ $\operatorname{rank}\left(\mathbf{A}^{k}\right)=\operatorname{rank}\left(\mathbf{Q}^{-1} \mathbf{A}^{k} \mathbf{Q}\right)=\operatorname{rank}\left(\mathbf{C}^{k}\right)$, it must be the case that \mathbf{C}^{k} is nonsingular, and hence \mathbf{C} is nonsingular. Finally, notice that $\operatorname{index}(\mathbf{N})=k$ because if $\operatorname{index}(\mathbf{N}) \neq k$, then $\mathbf{N}^{k-1}=\mathbf{0}$, so

$$
\begin{aligned}
\operatorname{rank}\left(\mathbf{A}^{k-1}\right) & =\operatorname{rank}\left(\mathbf{Q}^{-1} \mathbf{A}^{k-1} \mathbf{Q}\right)=\operatorname{rank}\left(\begin{array}{cc}
\mathbf{C}^{k-1} & \mathbf{0} \\
\mathbf{0} & \mathbf{N}^{k-1}
\end{array}\right)=\operatorname{rank}\left(\begin{array}{cc}
\mathbf{C}^{k-1} & \mathbf{0} \\
\mathbf{0} & \mathbf{0}
\end{array}\right) \\
& =\operatorname{rank}\left(\mathbf{C}^{k-1}\right)=r=\operatorname{rank}\left(\mathbf{A}^{k}\right)
\end{aligned}
$$

which is impossible because $\operatorname{index}(\mathbf{A})=k$ is the smallest integer for which there is equality in ranks of powers.

Example 5.10.3

Problem: Let $\mathbf{A}_{n \times n}$ have index k with $\operatorname{rank}\left(\mathbf{A}^{k}\right)=r$, and let

$$
\mathbf{Q}^{-1} \mathbf{A} \mathbf{Q}=\left(\begin{array}{cc}
\mathbf{C}_{r \times r} & \mathbf{0} \\
\mathbf{0} & \mathbf{N}
\end{array}\right) \quad \text { with } \quad \mathbf{Q}=\left(\mathbf{X}_{n \times r} \mid \mathbf{Y}\right) \text { and } \mathbf{Q}^{-1}=\left(\frac{\mathbf{U}_{r \times n}}{\mathbf{V}}\right)
$$

be the core-nilpotent decomposition described in (5.10.5). Explain why

$$
\mathbf{Q}\left(\begin{array}{cc}
\mathbf{I}_{r} & \mathbf{0} \\
\mathbf{0} & \mathbf{0}
\end{array}\right) \mathbf{Q}^{-1}=\mathbf{X} \mathbf{U}=\text { the projector onto } R\left(\mathbf{A}^{k}\right) \text { along } N\left(\mathbf{A}^{k}\right)
$$

and

$$
\mathbf{Q}\left(\begin{array}{cc}
\mathbf{0} & \mathbf{0} \\
\mathbf{0} & \mathbf{I}_{n-r}
\end{array}\right) \mathbf{Q}^{-1}=\mathbf{Y} \mathbf{V}=\text { the projector onto } N\left(\mathbf{A}^{k}\right) \text { along } R\left(\mathbf{A}^{k}\right)
$$

Solution: Because $R\left(\mathbf{A}^{k}\right)$ and $N\left(\mathbf{A}^{k}\right)$ are complementary subspaces, and because the columns of \mathbf{X} and \mathbf{Y} constitute respective bases for these spaces, it follows from the discussion concerning projectors on p. 386 that

$$
\mathbf{P}=(\mathbf{X} \mid \mathbf{Y})\left(\begin{array}{ll}
\mathbf{I} & \mathbf{0} \\
\mathbf{0} & \mathbf{0}
\end{array}\right)(\mathbf{X} \mid \mathbf{Y})^{-1}=\mathbf{Q}\left(\begin{array}{cc}
\mathbf{I}_{r} & \mathbf{0} \\
\mathbf{0} & \mathbf{0}
\end{array}\right) \mathbf{Q}^{-1}=\mathbf{X} \mathbf{U}
$$

must be the projector onto $R\left(\mathbf{A}^{k}\right)$ along $N\left(\mathbf{A}^{k}\right)$, and

$$
\mathbf{I}-\mathbf{P}=(\mathbf{X} \mid \mathbf{Y})\left(\begin{array}{ll}
\mathbf{0} & \mathbf{0} \\
\mathbf{0} & \mathbf{I}
\end{array}\right)(\mathbf{X} \mid \mathbf{Y})^{-1}=\mathbf{Q}\left(\begin{array}{cc}
\mathbf{0} & \mathbf{0} \\
\mathbf{0} & \mathbf{I}_{n-r}
\end{array}\right) \mathbf{Q}^{-1}=\mathbf{Y} \mathbf{V}
$$

is the complementary projector onto $N\left(\mathbf{A}^{k}\right)$ along $R\left(\mathbf{A}^{k}\right)$.

